簡介
可以直接將 MinDiff 整合到模型的實作中。雖然這樣做不如使用 MinDiffModel
方便,但此選項提供最高層級的控制,當您的模型是 tf.keras.Model
的子類別時,這會特別有用。
本指南示範如何將 MinDiff 直接整合到自訂模型的實作中,方法是新增至 train_step
方法。
設定
pip install --upgrade tensorflow-model-remediation
import tensorflow as tf
tf.get_logger().setLevel('ERROR') # Avoid TF warnings.
from tensorflow_model_remediation import min_diff
from tensorflow_model_remediation.tools.tutorials_utils import uci as tutorials_utils
首先,下載資料。為了簡潔起見,輸入準備邏輯已分解到輔助函式中,如輸入準備指南中所述。您可以閱讀完整指南,以瞭解此程序的詳細資訊。
# Original Dataset for training, sampled at 0.3 for reduced runtimes.
train_df = tutorials_utils.get_uci_data(split='train', sample=0.3)
train_ds = tutorials_utils.df_to_dataset(train_df, batch_size=128)
# Dataset needed to train with MinDiff.
train_with_min_diff_ds = (
tutorials_utils.get_uci_with_min_diff_dataset(split='train', sample=0.3))
原始自訂模型自訂
tf.keras.Model
旨在透過子類別化輕鬆自訂。這通常涉及變更呼叫 fit
時發生的情況,如此處所述。
本指南使用自訂實作,其中 train_step
非常類似預設的 tf.keras.Model.train_step
。一般來說,這樣做沒有任何好處,但在此處,它將有助於示範如何整合 MinDiff。
class CustomModel(tf.keras.Model):
def train_step(self, data):
# Unpack the data.
x, y, sample_weight = tf.keras.utils.unpack_x_y_sample_weight(data)
with tf.GradientTape() as tape:
y_pred = self(x, training=True) # Forward pass.
loss = self.compiled_loss(
y, y_pred, sample_weight, regularization_losses=self.losses)
# Compute the loss value.
loss = self.compiled_loss(
y, y_pred, sample_weight, regularization_losses=self.losses)
# Compute gradients and update weights.
self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
# Update and return metrics.
self.compiled_metrics.update_state(y, y_pred, sample_weight)
return {m.name: m.result() for m in self.metrics}
使用 Functional API 訓練模型,就像訓練典型的 Model
一樣。
model = tutorials_utils.get_uci_model(model_class=CustomModel) # Use CustomModel.
model.compile(optimizer='adam', loss='binary_crossentropy')
_ = model.fit(train_ds, epochs=1)
直接將 MinDiff 整合到模型中
將 MinDiff 新增至 train_step
若要整合 MinDiff,您需要將一些程式碼行新增至 CustomModel
,此處重新命名為 CustomModelWithMinDiff
。
為了清楚起見,本指南使用名為 apply_min_diff
的布林值旗標。所有與 MinDiff 相關的程式碼只有在設定為 True
時才會執行。如果設定為 False
,則模型的行為會與 CustomModel
完全相同。
min_diff_loss_fn = min_diff.losses.MMDLoss() # Hard coded for convenience.
min_diff_weight = 2 # Arbitrary number for example, hard coded for convenience.
apply_min_diff = True # Flag to help show where the additional lines are.
class CustomModelWithMinDiff(tf.keras.Model):
def train_step(self, data):
# Unpack the data.
x, y, sample_weight = tf.keras.utils.unpack_x_y_sample_weight(data)
# Unpack the MinDiff data.
if apply_min_diff:
min_diff_data = min_diff.keras.utils.unpack_min_diff_data(x)
min_diff_x, membership, min_diff_sample_weight = (
tf.keras.utils.unpack_x_y_sample_weight(min_diff_data))
x = min_diff.keras.utils.unpack_original_inputs(x)
with tf.GradientTape() as tape:
y_pred = self(x, training=True) # Forward pass.
loss = self.compiled_loss(
y, y_pred, sample_weight, regularization_losses=self.losses)
# Compute the loss value.
loss = self.compiled_loss(
y, y_pred, sample_weight, regularization_losses=self.losses)
# Calculate and add the min_diff_loss. This must be done within the scope
# of tf.GradientTape().
if apply_min_diff:
min_diff_predictions = self(min_diff_x, training=True)
min_diff_loss = min_diff_weight * min_diff_loss_fn(
min_diff_predictions, membership, min_diff_sample_weight)
loss += min_diff_loss
# Compute gradients and update weights.
self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
# Update and return metrics.
self.compiled_metrics.update_state(y, y_pred, sample_weight)
return {m.name: m.result() for m in self.metrics}
使用此模型進行訓練看起來與先前的訓練完全相同,但使用的資料集除外。
model = tutorials_utils.get_uci_model(model_class=CustomModelWithMinDiff)
model.compile(optimizer='adam', loss='binary_crossentropy')
_ = model.fit(train_with_min_diff_ds, epochs=1)
重塑輸入 (選用)
鑑於此方法提供完全控制權,您可以藉此機會將輸入重塑為稍微更清晰的形式。使用 MinDiffModel
時,min_diff_data
需要封裝到每個批次的第一個元件中。使用 train_with_min_diff_ds
資料集時就是這種情況。
for x, y in train_with_min_diff_ds.take(1):
print('Type of x:', type(x)) # MinDiffPackedInputs
print('Type of y:', type(y)) # Tensor (original labels)
由於此需求已解除,您可以將資料重新組織為稍微更直觀的結構,原始資料和 MinDiff 資料乾淨地分開。
def _reformat_input(inputs, original_labels):
min_diff_data = min_diff.keras.utils.unpack_min_diff_data(inputs)
original_inputs = min_diff.keras.utils.unpack_original_inputs(inputs)
original_data = (original_inputs, original_labels)
return {
'min_diff_data': min_diff_data,
'original_data': original_data}
customized_train_with_min_diff_ds = train_with_min_diff_ds.map(_reformat_input)
此步驟完全是選用的,但可能有助於更好地組織資料。如果您這樣做,您實作 CustomModelWithMinDiff
的唯一差異將是您在開頭解壓縮 data
的方式。
class CustomModelWithMinDiff(tf.keras.Model):
def train_step(self, data):
# Unpack the MinDiff data from the custom structure.
if apply_min_diff:
min_diff_data = data['min_diff_data']
min_diff_x, membership, min_diff_sample_weight = (
tf.keras.utils.unpack_x_y_sample_weight(min_diff_data))
data = data['original_data']
... # possible preprocessing or validation on data before unpacking.
x, y, sample_weight = tf.keras.utils.unpack_x_y_sample_weight(data)
...
透過最後這個步驟,您可以完全控制輸入格式以及如何在模型中使用它來套用 MinDiff。