MoveNet:超快速且精準的姿勢偵測模型。

在 TensorFlow.org 上檢視 在 Google Colab 中執行 在 GitHub 上檢視 下載筆記本 查看 TF Hub 模型

MoveNet 是一款超快速且精準的模型,可偵測人體的 17 個關鍵點。此模型在 TF Hub 上提供兩種變體,分別稱為 Lightning 和 Thunder。Lightning 適用於延遲至關重要的應用程式,而 Thunder 適用於需要高精準度的應用程式。這兩種模型在大多數現代桌上型電腦、筆記型電腦和手機上的執行速度都比即時 (30+ FPS) 還快,這對於即時健身、健康和保健應用程式至關重要。

drawing

*圖片下載自 Pexels (https://www.pexels.com/)

這個 Colab 將逐步引導您瞭解如何載入 MoveNet,以及如何在以下輸入圖片和影片上執行推論。

使用 MoveNet 進行人體姿勢估計

視覺化程式庫與匯入

pip install -q imageio
pip install -q opencv-python
pip install -q git+https://github.com/tensorflow/docs
import tensorflow as tf
import tensorflow_hub as hub
from tensorflow_docs.vis import embed
import numpy as np
import cv2

# Import matplotlib libraries
from matplotlib import pyplot as plt
from matplotlib.collections import LineCollection
import matplotlib.patches as patches

# Some modules to display an animation using imageio.
import imageio
from IPython.display import HTML, display

用於視覺化的輔助函式

從 TF Hub 載入模型

model_name = "movenet_lightning"

if "tflite" in model_name:
  if "movenet_lightning_f16" in model_name:
    !wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/lightning/tflite/float16/4?lite-format=tflite
    input_size = 192
  elif "movenet_thunder_f16" in model_name:
    !wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/thunder/tflite/float16/4?lite-format=tflite
    input_size = 256
  elif "movenet_lightning_int8" in model_name:
    !wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/lightning/tflite/int8/4?lite-format=tflite
    input_size = 192
  elif "movenet_thunder_int8" in model_name:
    !wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/thunder/tflite/int8/4?lite-format=tflite
    input_size = 256
  else:
    raise ValueError("Unsupported model name: %s" % model_name)

  # Initialize the TFLite interpreter
  interpreter = tf.lite.Interpreter(model_path="model.tflite")
  interpreter.allocate_tensors()

  def movenet(input_image):
    """Runs detection on an input image.

    Args:
      input_image: A [1, height, width, 3] tensor represents the input image
        pixels. Note that the height/width should already be resized and match the
        expected input resolution of the model before passing into this function.

    Returns:
      A [1, 1, 17, 3] float numpy array representing the predicted keypoint
      coordinates and scores.
    """
    # TF Lite format expects tensor type of uint8.
    input_image = tf.cast(input_image, dtype=tf.uint8)
    input_details = interpreter.get_input_details()
    output_details = interpreter.get_output_details()
    interpreter.set_tensor(input_details[0]['index'], input_image.numpy())
    # Invoke inference.
    interpreter.invoke()
    # Get the model prediction.
    keypoints_with_scores = interpreter.get_tensor(output_details[0]['index'])
    return keypoints_with_scores

else:
  if "movenet_lightning" in model_name:
    module = hub.load("https://tfhub.dev/google/movenet/singlepose/lightning/4")
    input_size = 192
  elif "movenet_thunder" in model_name:
    module = hub.load("https://tfhub.dev/google/movenet/singlepose/thunder/4")
    input_size = 256
  else:
    raise ValueError("Unsupported model name: %s" % model_name)

  def movenet(input_image):
    """Runs detection on an input image.

    Args:
      input_image: A [1, height, width, 3] tensor represents the input image
        pixels. Note that the height/width should already be resized and match the
        expected input resolution of the model before passing into this function.

    Returns:
      A [1, 1, 17, 3] float numpy array representing the predicted keypoint
      coordinates and scores.
    """
    model = module.signatures['serving_default']

    # SavedModel format expects tensor type of int32.
    input_image = tf.cast(input_image, dtype=tf.int32)
    # Run model inference.
    outputs = model(input_image)
    # Output is a [1, 1, 17, 3] tensor.
    keypoints_with_scores = outputs['output_0'].numpy()
    return keypoints_with_scores
2024-03-09 15:01:44.320490: E external/local_xla/xla/stream_executor/cuda/cuda_driver.cc:282] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected

單張圖片範例

此環節示範在單張圖片上執行模型以預測 17 個人體關鍵點的最簡工作範例。

載入輸入圖片

curl -o input_image.jpeg https://images.pexels.com/photos/4384679/pexels-photo-4384679.jpeg --silent
# Load the input image.
image_path = 'input_image.jpeg'
image = tf.io.read_file(image_path)
image = tf.image.decode_jpeg(image)

執行推論

# Resize and pad the image to keep the aspect ratio and fit the expected size.
input_image = tf.expand_dims(image, axis=0)
input_image = tf.image.resize_with_pad(input_image, input_size, input_size)

# Run model inference.
keypoints_with_scores = movenet(input_image)

# Visualize the predictions with image.
display_image = tf.expand_dims(image, axis=0)
display_image = tf.cast(tf.image.resize_with_pad(
    display_image, 1280, 1280), dtype=tf.int32)
output_overlay = draw_prediction_on_image(
    np.squeeze(display_image.numpy(), axis=0), keypoints_with_scores)

plt.figure(figsize=(5, 5))
plt.imshow(output_overlay)
_ = plt.axis('off')
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)

png

影片 (圖片序列) 範例

本節示範當輸入為影格序列時,如何根據前一個影格的偵測結果套用智慧型裁剪。這可讓模型將注意力和資源集中在主要主體上,進而在不犧牲速度的情況下,大幅提升預測品質。

裁剪演算法

載入輸入圖片序列

wget -q -O dance.gif https://github.com/tensorflow/tfjs-models/raw/master/pose-detection/assets/dance_input.gif
# Load the input image.
image_path = 'dance.gif'
image = tf.io.read_file(image_path)
image = tf.image.decode_gif(image)

使用裁剪演算法執行推論

# Load the input image.
num_frames, image_height, image_width, _ = image.shape
crop_region = init_crop_region(image_height, image_width)

output_images = []
bar = display(progress(0, num_frames-1), display_id=True)
for frame_idx in range(num_frames):
  keypoints_with_scores = run_inference(
      movenet, image[frame_idx, :, :, :], crop_region,
      crop_size=[input_size, input_size])
  output_images.append(draw_prediction_on_image(
      image[frame_idx, :, :, :].numpy().astype(np.int32),
      keypoints_with_scores, crop_region=None,
      close_figure=True, output_image_height=300))
  crop_region = determine_crop_region(
      keypoints_with_scores, image_height, image_width)
  bar.update(progress(frame_idx, num_frames-1))

# Prepare gif visualization.
output = np.stack(output_images, axis=0)
to_gif(output, duration=100)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
/tmpfs/tmp/ipykernel_112701/2693263076.py:162: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed two minor releases later. Use buffer_rgba instead.
  image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)

gif