參數化量子電路用於強化學習

在 TensorFlow.org 上檢視 在 Google Colab 中執行 在 GitHub 上檢視原始碼 下載筆記本

量子電腦已證實能在特定問題領域提供運算優勢。量子強化學習 (QRL) 領域旨在藉由設計仰賴量子運算模型的強化學習代理程式,來運用此優勢。

在本教學課程中,您將實作兩種以參數化/變分量子電路 (PQC 或 VQC) 為基礎的強化學習演算法,分別是策略梯度和深度 Q 學習實作。這些演算法分別由 [1] Jerbi 等人[2] Skolik 等人 提出。

您將在 TFQ 中實作具有資料重新上傳功能的 PQC,並將其用作

  1. 透過策略梯度方法訓練的強化學習策略,
  2. 透過深度 Q 學習訓練的 Q 函數近似器,

各自解決來自 OpenAI Gym 的基準測試任務 CartPole-v1。請注意,如 [1][2] 中所示,這些代理程式也可用於解決來自 OpenAI Gym 的其他任務環境,例如 FrozenLake-v0MountainCar-v0Acrobot-v1

此實作的功能

  • 您將學習如何使用 tfq.layers.ControlledPQC 實作具有資料重新上傳功能的 PQC,這在 QML 的許多應用中都會出現。此實作也自然允許在 PQC 的輸入端使用可訓練的縮放參數,以提高其表現力,
  • 您將學習如何在 PQC 的輸出端實作具有可訓練權重的可觀測值,以允許彈性的輸出值範圍,
  • 您將學習如何使用 tf.keras.Model 訓練非顯著 ML 損失函數,亦即與 model.compilemodel.fit 不相容的函數,方法是使用 tf.GradientTape

設定

安裝 TensorFlow

pip install tensorflow==2.15.0

安裝 TensorFlow Quantum

pip install tensorflow-quantum==0.7.3

安裝 Gym

pip install gym==0.18.0

現在匯入 TensorFlow 和模組依附元件

# Update package resources to account for version changes.
import importlib, pkg_resources
importlib.reload(pkg_resources)
import tensorflow as tf
import tensorflow_quantum as tfq

import gym, cirq, sympy
import numpy as np
from functools import reduce
from collections import deque, defaultdict
import matplotlib.pyplot as plt
from cirq.contrib.svg import SVGCircuit
tf.get_logger().setLevel('ERROR')

1. 建構具有資料重新上傳功能的 PQC

您要實作的兩種強化學習演算法的核心,是將環境中代理程式的狀態 \(s\) (即 numpy 陣列) 作為輸入,並輸出期望值向量的 PQC。然後,這些期望值會經過後處理,以產生代理程式的策略 \(\pi(a|s)\) 或近似 Q 值 \(Q(s,a)\)。如此一來,PQC 便在現代深度強化學習演算法中扮演著與深度神經網路類似的角色。

將輸入向量編碼到 PQC 中的一種常見方法是使用單量子位元旋轉,其中旋轉角度由輸入向量的分量控制。為了獲得 高表現力模型,這些單量子位元編碼並非僅在 PQC 中執行一次,而是在多個「重新上傳」中執行,並與變分閘交錯。此類 PQC 的佈局如下所示

[1][2] 中所述,進一步增強資料重新上傳 PQC 的表現力和可訓練性的一種方法,是為 PQC 的每個編碼閘使用可訓練的輸入縮放參數 \(\boldsymbol{\lambda}\),並在其輸出端使用可訓練的可觀測權重 \(\boldsymbol{w}\)。

1.1 用於 ControlledPQC 的 Cirq 電路

第一步是在 Cirq 中實作將用作 PQC 的量子電路。為此,首先定義將在電路中應用的基本單元,即任意單量子位元旋轉和 CZ 閘的糾纏層

def one_qubit_rotation(qubit, symbols):
    """
    Returns Cirq gates that apply a rotation of the bloch sphere about the X,
    Y and Z axis, specified by the values in `symbols`.
    """
    return [cirq.rx(symbols[0])(qubit),
            cirq.ry(symbols[1])(qubit),
            cirq.rz(symbols[2])(qubit)]

def entangling_layer(qubits):
    """
    Returns a layer of CZ entangling gates on `qubits` (arranged in a circular topology).
    """
    cz_ops = [cirq.CZ(q0, q1) for q0, q1 in zip(qubits, qubits[1:])]
    cz_ops += ([cirq.CZ(qubits[0], qubits[-1])] if len(qubits) != 2 else [])
    return cz_ops

現在,使用這些函數產生 Cirq 電路

def generate_circuit(qubits, n_layers):
    """Prepares a data re-uploading circuit on `qubits` with `n_layers` layers."""
    # Number of qubits
    n_qubits = len(qubits)

    # Sympy symbols for variational angles
    params = sympy.symbols(f'theta(0:{3*(n_layers+1)*n_qubits})')
    params = np.asarray(params).reshape((n_layers + 1, n_qubits, 3))

    # Sympy symbols for encoding angles
    inputs = sympy.symbols(f'x(0:{n_layers})'+f'_(0:{n_qubits})')
    inputs = np.asarray(inputs).reshape((n_layers, n_qubits))

    # Define circuit
    circuit = cirq.Circuit()
    for l in range(n_layers):
        # Variational layer
        circuit += cirq.Circuit(one_qubit_rotation(q, params[l, i]) for i, q in enumerate(qubits))
        circuit += entangling_layer(qubits)
        # Encoding layer
        circuit += cirq.Circuit(cirq.rx(inputs[l, i])(q) for i, q in enumerate(qubits))

    # Last varitional layer
    circuit += cirq.Circuit(one_qubit_rotation(q, params[n_layers, i]) for i,q in enumerate(qubits))

    return circuit, list(params.flat), list(inputs.flat)

檢查這是否產生在變分層和編碼層之間交替的電路。

n_qubits, n_layers = 3, 1
qubits = cirq.GridQubit.rect(1, n_qubits)
circuit, _, _ = generate_circuit(qubits, n_layers)
SVGCircuit(circuit)
findfont: Font family ['Arial'] not found. Falling back to DejaVu Sans.

svg

1.2 使用 ControlledPQC 的 ReUploadingPQC 層

若要從上圖建構重新上傳 PQC,您可以建立自訂 Keras 層。此層將管理可訓練參數 (變分角 \(\boldsymbol{\theta}\) 和輸入縮放參數 \(\boldsymbol{\lambda}\)),並將輸入值 (輸入狀態 \(s\)) 解析為電路中的適當符號。

class ReUploadingPQC(tf.keras.layers.Layer):
    """
    Performs the transformation (s_1, ..., s_d) -> (theta_1, ..., theta_N, lmbd[1][1]s_1, ..., lmbd[1][M]s_1,
        ......., lmbd[d][1]s_d, ..., lmbd[d][M]s_d) for d=input_dim, N=theta_dim and M=n_layers.
    An activation function from tf.keras.activations, specified by `activation` ('linear' by default) is
        then applied to all lmbd[i][j]s_i.
    All angles are finally permuted to follow the alphabetical order of their symbol names, as processed
        by the ControlledPQC.
    """

    def __init__(self, qubits, n_layers, observables, activation="linear", name="re-uploading_PQC"):
        super(ReUploadingPQC, self).__init__(name=name)
        self.n_layers = n_layers
        self.n_qubits = len(qubits)

        circuit, theta_symbols, input_symbols = generate_circuit(qubits, n_layers)

        theta_init = tf.random_uniform_initializer(minval=0.0, maxval=np.pi)
        self.theta = tf.Variable(
            initial_value=theta_init(shape=(1, len(theta_symbols)), dtype="float32"),
            trainable=True, name="thetas"
        )

        lmbd_init = tf.ones(shape=(self.n_qubits * self.n_layers,))
        self.lmbd = tf.Variable(
            initial_value=lmbd_init, dtype="float32", trainable=True, name="lambdas"
        )

        # Define explicit symbol order.
        symbols = [str(symb) for symb in theta_symbols + input_symbols]
        self.indices = tf.constant([symbols.index(a) for a in sorted(symbols)])

        self.activation = activation
        self.empty_circuit = tfq.convert_to_tensor([cirq.Circuit()])
        self.computation_layer = tfq.layers.ControlledPQC(circuit, observables)        

    def call(self, inputs):
        # inputs[0] = encoding data for the state.
        batch_dim = tf.gather(tf.shape(inputs[0]), 0)
        tiled_up_circuits = tf.repeat(self.empty_circuit, repeats=batch_dim)
        tiled_up_thetas = tf.tile(self.theta, multiples=[batch_dim, 1])
        tiled_up_inputs = tf.tile(inputs[0], multiples=[1, self.n_layers])
        scaled_inputs = tf.einsum("i,ji->ji", self.lmbd, tiled_up_inputs)
        squashed_inputs = tf.keras.layers.Activation(self.activation)(scaled_inputs)

        joined_vars = tf.concat([tiled_up_thetas, squashed_inputs], axis=1)
        joined_vars = tf.gather(joined_vars, self.indices, axis=1)

        return self.computation_layer([tiled_up_circuits, joined_vars])

2. 具有 PQC 策略的策略梯度強化學習

在本節中,您將實作 [1] 中提出的策略梯度演算法。為此,您將從剛定義的 PQC 開始,建構 softmax-VQC 策略 (其中 VQC 代表變分量子電路)

\[ \pi_\theta(a|s) = \frac{e^{\beta \langle O_a \rangle_{s,\theta} } }{\sum_{a'} e^{\beta \langle O_{a'} \rangle_{s,\theta} } } \]

其中 \(\langle O_a \rangle_{s,\theta}\) 是在 PQC 輸出端測量的可觀測值 \(O_a\) (每個動作一個) 的期望值,而 \(\beta\) 是可調整的反向溫度參數。

您可以採用 [1] 中用於 CartPole 的相同可觀測值,即作用於所有量子位元的全域 \(Z_0Z_1Z_2Z_3\) Pauli 乘積,每個動作都以動作特定的權重加權。若要實作 Pauli 乘積的加權,您可以使用額外的 tf.keras.layers.Layer,其會儲存動作特定的權重,並將其乘法應用於期望值 \(\langle Z_0Z_1Z_2Z_3 \rangle_{s,\theta}\)。

class Alternating(tf.keras.layers.Layer):
    def __init__(self, output_dim):
        super(Alternating, self).__init__()
        self.w = tf.Variable(
            initial_value=tf.constant([[(-1.)**i for i in range(output_dim)]]), dtype="float32",
            trainable=True, name="obs-weights")

    def call(self, inputs):
        return tf.matmul(inputs, self.w)

準備 PQC 的定義

n_qubits = 4 # Dimension of the state vectors in CartPole
n_layers = 5 # Number of layers in the PQC
n_actions = 2 # Number of actions in CartPole

qubits = cirq.GridQubit.rect(1, n_qubits)

及其可觀測值

ops = [cirq.Z(q) for q in qubits]
observables = [reduce((lambda x, y: x * y), ops)] # Z_0*Z_1*Z_2*Z_3

有了這個,定義一個 tf.keras.Model,它會依序應用先前定義的 ReUploadingPQC 層,然後是一個後處理層,該層使用 Alternating 計算加權可觀測值,然後將其饋送到 tf.keras.layers.Softmax 層,該層輸出代理程式的 softmax-VQC 策略。

def generate_model_policy(qubits, n_layers, n_actions, beta, observables):
    """Generates a Keras model for a data re-uploading PQC policy."""

    input_tensor = tf.keras.Input(shape=(len(qubits), ), dtype=tf.dtypes.float32, name='input')
    re_uploading_pqc = ReUploadingPQC(qubits, n_layers, observables)([input_tensor])
    process = tf.keras.Sequential([
        Alternating(n_actions),
        tf.keras.layers.Lambda(lambda x: x * beta),
        tf.keras.layers.Softmax()
    ], name="observables-policy")
    policy = process(re_uploading_pqc)
    model = tf.keras.Model(inputs=[input_tensor], outputs=policy)

    return model

model = generate_model_policy(qubits, n_layers, n_actions, 1.0, observables)
tf.keras.utils.plot_model(model, show_shapes=True, dpi=70)

png

您現在可以使用基本 REINFORCE 演算法 (請參閱 [1] 中的演算法 1),在 CartPole-v1 上訓練 PQC 策略。請注意以下幾點

  1. 由於縮放參數、變分角和可觀測權重是以不同的學習率訓練的,因此方便定義 3 個具有各自學習率的獨立最佳化工具,每個最佳化工具更新其中一組參數。
  2. 策略梯度強化學習中的損失函數為

    \[ \mathcal{L}(\theta) = -\frac{1}{|\mathcal{B}|}\sum_{s_0,a_0,r_1,s_1,a_1, \ldots \in \mathcal{B} } \left(\sum_{t=0}^{H-1} \log(\pi_\theta(a_t|s_t)) \sum_{t'=1}^{H-t} \gamma^{t'} r_{t+t'} \right)\]

對於在環境中遵循策略 \(\pi_\theta\) 的互動劇集 \((s_0,a_0,r_1,s_1,a_1, \ldots)\) 的批次 \(\mathcal{B}\)。這與模型應擬合的具有固定目標值的監督式學習損失不同,這使得無法使用類似 model.fit 的簡單函數呼叫來訓練策略。相反地,使用 tf.GradientTape 可以追蹤涉及 PQC (即策略取樣) 的計算,並在互動期間儲存其對損失的貢獻。在執行一批劇集後,您可以對這些計算應用反向傳播,以獲得損失相對於 PQC 參數的梯度,並使用最佳化工具更新策略模型。

首先定義一個收集與環境互動劇集的函數

def gather_episodes(state_bounds, n_actions, model, n_episodes, env_name):
    """Interact with environment in batched fashion."""

    trajectories = [defaultdict(list) for _ in range(n_episodes)]
    envs = [gym.make(env_name) for _ in range(n_episodes)]

    done = [False for _ in range(n_episodes)]
    states = [e.reset() for e in envs]

    while not all(done):
        unfinished_ids = [i for i in range(n_episodes) if not done[i]]
        normalized_states = [s/state_bounds for i, s in enumerate(states) if not done[i]]

        for i, state in zip(unfinished_ids, normalized_states):
            trajectories[i]['states'].append(state)

        # Compute policy for all unfinished envs in parallel
        states = tf.convert_to_tensor(normalized_states)
        action_probs = model([states])

        # Store action and transition all environments to the next state
        states = [None for i in range(n_episodes)]
        for i, policy in zip(unfinished_ids, action_probs.numpy()):
            action = np.random.choice(n_actions, p=policy)
            states[i], reward, done[i], _ = envs[i].step(action)
            trajectories[i]['actions'].append(action)
            trajectories[i]['rewards'].append(reward)

    return trajectories

以及一個計算劇集中收集的回報 \(r_t\) 的折現回報 \(\sum_{t'=1}^{H-t} \gamma^{t'} r_{t+t'}\) 的函數

def compute_returns(rewards_history, gamma):
    """Compute discounted returns with discount factor `gamma`."""
    returns = []
    discounted_sum = 0
    for r in rewards_history[::-1]:
        discounted_sum = r + gamma * discounted_sum
        returns.insert(0, discounted_sum)

    # Normalize them for faster and more stable learning
    returns = np.array(returns)
    returns = (returns - np.mean(returns)) / (np.std(returns) + 1e-8)
    returns = returns.tolist()

    return returns

定義超參數

state_bounds = np.array([2.4, 2.5, 0.21, 2.5])
gamma = 1
batch_size = 10
n_episodes = 1000

準備最佳化工具

optimizer_in = tf.keras.optimizers.Adam(learning_rate=0.1, amsgrad=True)
optimizer_var = tf.keras.optimizers.Adam(learning_rate=0.01, amsgrad=True)
optimizer_out = tf.keras.optimizers.Adam(learning_rate=0.1, amsgrad=True)

# Assign the model parameters to each optimizer
w_in, w_var, w_out = 1, 0, 2

實作一個使用狀態、動作和回報更新策略的函數

@tf.function
def reinforce_update(states, actions, returns, model):
    states = tf.convert_to_tensor(states)
    actions = tf.convert_to_tensor(actions)
    returns = tf.convert_to_tensor(returns)

    with tf.GradientTape() as tape:
        tape.watch(model.trainable_variables)
        logits = model(states)
        p_actions = tf.gather_nd(logits, actions)
        log_probs = tf.math.log(p_actions)
        loss = tf.math.reduce_sum(-log_probs * returns) / batch_size
    grads = tape.gradient(loss, model.trainable_variables)
    for optimizer, w in zip([optimizer_in, optimizer_var, optimizer_out], [w_in, w_var, w_out]):
        optimizer.apply_gradients([(grads[w], model.trainable_variables[w])])

現在實作代理程式的主要訓練迴圈。

env_name = "CartPole-v1"

# Start training the agent
episode_reward_history = []
for batch in range(n_episodes // batch_size):
    # Gather episodes
    episodes = gather_episodes(state_bounds, n_actions, model, batch_size, env_name)

    # Group states, actions and returns in numpy arrays
    states = np.concatenate([ep['states'] for ep in episodes])
    actions = np.concatenate([ep['actions'] for ep in episodes])
    rewards = [ep['rewards'] for ep in episodes]
    returns = np.concatenate([compute_returns(ep_rwds, gamma) for ep_rwds in rewards])
    returns = np.array(returns, dtype=np.float32)

    id_action_pairs = np.array([[i, a] for i, a in enumerate(actions)])

    # Update model parameters.
    reinforce_update(states, id_action_pairs, returns, model)

    # Store collected rewards
    for ep_rwds in rewards:
        episode_reward_history.append(np.sum(ep_rwds))

    avg_rewards = np.mean(episode_reward_history[-10:])

    print('Finished episode', (batch + 1) * batch_size,
          'Average rewards: ', avg_rewards)

    if avg_rewards >= 500.0:
        break
Finished episode 10 Average rewards:  22.3
Finished episode 20 Average rewards:  27.4
Finished episode 30 Average rewards:  24.7
Finished episode 40 Average rewards:  21.2
Finished episode 50 Average rewards:  33.9
Finished episode 60 Average rewards:  31.3
Finished episode 70 Average rewards:  37.3
Finished episode 80 Average rewards:  34.4
Finished episode 90 Average rewards:  58.4
Finished episode 100 Average rewards:  33.2
Finished episode 110 Average rewards:  67.9
Finished episode 120 Average rewards:  63.9
Finished episode 130 Average rewards:  83.5
Finished episode 140 Average rewards:  88.0
Finished episode 150 Average rewards:  142.9
Finished episode 160 Average rewards:  204.7
Finished episode 170 Average rewards:  138.1
Finished episode 180 Average rewards:  183.0
Finished episode 190 Average rewards:  196.0
Finished episode 200 Average rewards:  302.0
Finished episode 210 Average rewards:  374.4
Finished episode 220 Average rewards:  329.1
Finished episode 230 Average rewards:  307.8
Finished episode 240 Average rewards:  359.6
Finished episode 250 Average rewards:  400.7
Finished episode 260 Average rewards:  414.4
Finished episode 270 Average rewards:  394.9
Finished episode 280 Average rewards:  470.7
Finished episode 290 Average rewards:  459.7
Finished episode 300 Average rewards:  428.7
Finished episode 310 Average rewards:  500.0

繪製代理程式的學習歷程記錄

plt.figure(figsize=(10,5))
plt.plot(episode_reward_history)
plt.xlabel('Epsiode')
plt.ylabel('Collected rewards')
plt.show()

png

恭喜,您已在 Cartpole 上訓練了量子策略梯度模型!上圖顯示代理程式在與環境互動期間每個劇集收集的回報。您應該會看到,在數百個劇集後,代理程式的效能接近最佳,即每個劇集 500 個回報。

您現在可以使用範例劇集中的 env.render() 可視化代理程式的效能 (僅當您的筆記本可以存取顯示器時,才取消註解/執行以下儲存格)

# from PIL import Image

# env = gym.make('CartPole-v1')
# state = env.reset()
# frames = []
# for t in range(500):
#     im = Image.fromarray(env.render(mode='rgb_array'))
#     frames.append(im)
#     policy = model([tf.convert_to_tensor([state/state_bounds])])
#     action = np.random.choice(n_actions, p=policy.numpy()[0])
#     state, _, done, _ = env.step(action)
#     if done:
#         break
# env.close()
# frames[1].save('./images/gym_CartPole.gif',
#                save_all=True, append_images=frames[2:], optimize=False, duration=40, loop=0)

3. 具有 PQC Q 函數近似器的深度 Q 學習

在本節中,您將轉向實作 [2] 中提出的深度 Q 學習演算法。與策略梯度方法相反,深度 Q 學習方法使用 PQC 來近似代理程式的 Q 函數。也就是說,PQC 定義了一個函數近似器

\[ Q_\theta(s,a) = \langle O_a \rangle_{s,\theta} \]

其中 \(\langle O_a \rangle_{s,\theta}\) 是在 PQC 輸出端測量的可觀測值 \(O_a\) (每個動作一個) 的期望值。

這些 Q 值使用從 Q 學習衍生的損失函數更新

\[ \mathcal{L}(\theta) = \frac{1}{|\mathcal{B}|}\sum_{s,a,r,s' \in \mathcal{B} } \left(Q_\theta(s,a) - [r +\max_{a'} Q_{\theta'}(s',a')]\right)^2\]

對於從重播記憶體取樣的與環境的 \(1\) 步互動 \((s,a,r,s')\) 的批次 \(\mathcal{B}\),以及指定目標 PQC 的參數 \(\theta'\) (即主 PQC 的副本,其參數在整個學習過程中偶爾從主 PQC 複製)。

您可以採用 [2] 中用於 CartPole 的相同可觀測值,即動作 \(0\) 的 \(Z_0Z_1\) Pauli 乘積和動作 \(1\) 的 \(Z_2Z_3\) Pauli 乘積。這兩個可觀測值都會重新縮放,使其期望值在 \([0,1]\) 中,並以動作特定的權重加權。若要實作 Pauli 乘積的重新縮放和加權,您可以再次定義一個額外的 tf.keras.layers.Layer,其會儲存動作特定的權重,並將其乘法應用於期望值 \(\left(1+\langle Z_0Z_1 \rangle_{s,\theta}\right)/2\) 和 \(\left(1+\langle Z_2Z_3 \rangle_{s,\theta}\right)/2\)。

class Rescaling(tf.keras.layers.Layer):
    def __init__(self, input_dim):
        super(Rescaling, self).__init__()
        self.input_dim = input_dim
        self.w = tf.Variable(
            initial_value=tf.ones(shape=(1,input_dim)), dtype="float32",
            trainable=True, name="obs-weights")

    def call(self, inputs):
        return tf.math.multiply((inputs+1)/2, tf.repeat(self.w,repeats=tf.shape(inputs)[0],axis=0))

準備 PQC 及其可觀測值的定義

n_qubits = 4 # Dimension of the state vectors in CartPole
n_layers = 5 # Number of layers in the PQC
n_actions = 2 # Number of actions in CartPole

qubits = cirq.GridQubit.rect(1, n_qubits)
ops = [cirq.Z(q) for q in qubits]
observables = [ops[0]*ops[1], ops[2]*ops[3]] # Z_0*Z_1 for action 0 and Z_2*Z_3 for action 1

定義一個 tf.keras.Model,與 PQC 策略模型類似,它會建構一個 Q 函數近似器,用於產生 Q 學習代理程式的主要和目標模型。

def generate_model_Qlearning(qubits, n_layers, n_actions, observables, target):
    """Generates a Keras model for a data re-uploading PQC Q-function approximator."""

    input_tensor = tf.keras.Input(shape=(len(qubits), ), dtype=tf.dtypes.float32, name='input')
    re_uploading_pqc = ReUploadingPQC(qubits, n_layers, observables, activation='tanh')([input_tensor])
    process = tf.keras.Sequential([Rescaling(len(observables))], name=target*"Target"+"Q-values")
    Q_values = process(re_uploading_pqc)
    model = tf.keras.Model(inputs=[input_tensor], outputs=Q_values)

    return model

model = generate_model_Qlearning(qubits, n_layers, n_actions, observables, False)
model_target = generate_model_Qlearning(qubits, n_layers, n_actions, observables, True)

model_target.set_weights(model.get_weights())
tf.keras.utils.plot_model(model, show_shapes=True, dpi=70)

png

tf.keras.utils.plot_model(model_target, show_shapes=True, dpi=70)

png

您現在可以實作深度 Q 學習演算法,並在 CartPole-v1 環境中進行測試。對於代理程式的策略,您可以使用 \(\varepsilon\)-貪婪策略

\[ \pi(a|s) = \begin{cases} \delta_{a,\text{argmax}_{a'} Q_\theta(s,a')}\quad \text{w.p.}\quad 1 - \varepsilon\\ \frac{1}{\text{num_actions} }\quad \quad \quad \quad \text{w.p.}\quad \varepsilon \end{cases} \]

其中 \(\varepsilon\) 在每次互動劇集中以乘法方式衰減。

首先定義一個在環境中執行互動步驟的函數

def interact_env(state, model, epsilon, n_actions, env):
    # Preprocess state
    state_array = np.array(state) 
    state = tf.convert_to_tensor([state_array])

    # Sample action
    coin = np.random.random()
    if coin > epsilon:
        q_vals = model([state])
        action = int(tf.argmax(q_vals[0]).numpy())
    else:
        action = np.random.choice(n_actions)

    # Apply sampled action in the environment, receive reward and next state
    next_state, reward, done, _ = env.step(action)

    interaction = {'state': state_array, 'action': action, 'next_state': next_state.copy(),
                   'reward': reward, 'done':np.float32(done)}

    return interaction

以及一個使用一批互動更新 Q 函數的函數

@tf.function
def Q_learning_update(states, actions, rewards, next_states, done, model, gamma, n_actions):
    states = tf.convert_to_tensor(states)
    actions = tf.convert_to_tensor(actions)
    rewards = tf.convert_to_tensor(rewards)
    next_states = tf.convert_to_tensor(next_states)
    done = tf.convert_to_tensor(done)

    # Compute their target q_values and the masks on sampled actions
    future_rewards = model_target([next_states])
    target_q_values = rewards + (gamma * tf.reduce_max(future_rewards, axis=1)
                                                   * (1.0 - done))
    masks = tf.one_hot(actions, n_actions)

    # Train the model on the states and target Q-values
    with tf.GradientTape() as tape:
        tape.watch(model.trainable_variables)
        q_values = model([states])
        q_values_masked = tf.reduce_sum(tf.multiply(q_values, masks), axis=1)
        loss = tf.keras.losses.Huber()(target_q_values, q_values_masked)

    # Backpropagation
    grads = tape.gradient(loss, model.trainable_variables)
    for optimizer, w in zip([optimizer_in, optimizer_var, optimizer_out], [w_in, w_var, w_out]):
        optimizer.apply_gradients([(grads[w], model.trainable_variables[w])])

定義超參數

gamma = 0.99
n_episodes = 2000

# Define replay memory
max_memory_length = 10000 # Maximum replay length
replay_memory = deque(maxlen=max_memory_length)

epsilon = 1.0  # Epsilon greedy parameter
epsilon_min = 0.01  # Minimum epsilon greedy parameter
decay_epsilon = 0.99 # Decay rate of epsilon greedy parameter
batch_size = 16
steps_per_update = 10 # Train the model every x steps
steps_per_target_update = 30 # Update the target model every x steps

準備最佳化工具

optimizer_in = tf.keras.optimizers.Adam(learning_rate=0.001, amsgrad=True)
optimizer_var = tf.keras.optimizers.Adam(learning_rate=0.001, amsgrad=True)
optimizer_out = tf.keras.optimizers.Adam(learning_rate=0.1, amsgrad=True)

# Assign the model parameters to each optimizer
w_in, w_var, w_out = 1, 0, 2

現在實作代理程式的主要訓練迴圈。

env = gym.make("CartPole-v1")

episode_reward_history = []
step_count = 0
for episode in range(n_episodes):
    episode_reward = 0
    state = env.reset()

    while True:
        # Interact with env
        interaction = interact_env(state, model, epsilon, n_actions, env)

        # Store interaction in the replay memory
        replay_memory.append(interaction)

        state = interaction['next_state']
        episode_reward += interaction['reward']
        step_count += 1

        # Update model
        if step_count % steps_per_update == 0:
            # Sample a batch of interactions and update Q_function
            training_batch = np.random.choice(replay_memory, size=batch_size)
            Q_learning_update(np.asarray([x['state'] for x in training_batch]),
                              np.asarray([x['action'] for x in training_batch]),
                              np.asarray([x['reward'] for x in training_batch], dtype=np.float32),
                              np.asarray([x['next_state'] for x in training_batch]),
                              np.asarray([x['done'] for x in training_batch], dtype=np.float32),
                              model, gamma, n_actions)

        # Update target model
        if step_count % steps_per_target_update == 0:
            model_target.set_weights(model.get_weights())

        # Check if the episode is finished
        if interaction['done']:
            break

    # Decay epsilon
    epsilon = max(epsilon * decay_epsilon, epsilon_min)
    episode_reward_history.append(episode_reward)
    if (episode+1)%10 == 0:
        avg_rewards = np.mean(episode_reward_history[-10:])
        print("Episode {}/{}, average last 10 rewards {}".format(
            episode+1, n_episodes, avg_rewards))
        if avg_rewards >= 500.0:
            break
Episode 10/2000, average last 10 rewards 22.1
Episode 20/2000, average last 10 rewards 27.9
Episode 30/2000, average last 10 rewards 31.5
Episode 40/2000, average last 10 rewards 23.3
Episode 50/2000, average last 10 rewards 25.4
Episode 60/2000, average last 10 rewards 19.7
Episode 70/2000, average last 10 rewards 12.5
Episode 80/2000, average last 10 rewards 11.7
Episode 90/2000, average last 10 rewards 14.9
Episode 100/2000, average last 10 rewards 15.3
Episode 110/2000, average last 10 rewards 14.6
Episode 120/2000, average last 10 rewards 20.4
Episode 130/2000, average last 10 rewards 14.2
Episode 140/2000, average last 10 rewards 21.6
Episode 150/2000, average last 10 rewards 30.4
Episode 160/2000, average last 10 rewards 27.6
Episode 170/2000, average last 10 rewards 18.5
Episode 180/2000, average last 10 rewards 30.6
Episode 190/2000, average last 10 rewards 12.2
Episode 200/2000, average last 10 rewards 27.2
Episode 210/2000, average last 10 rewards 27.2
Episode 220/2000, average last 10 rewards 15.3
Episode 230/2000, average last 10 rewards 128.4
Episode 240/2000, average last 10 rewards 68.3
Episode 250/2000, average last 10 rewards 44.0
Episode 260/2000, average last 10 rewards 119.8
Episode 270/2000, average last 10 rewards 135.3
Episode 280/2000, average last 10 rewards 90.6
Episode 290/2000, average last 10 rewards 120.9
Episode 300/2000, average last 10 rewards 125.3
Episode 310/2000, average last 10 rewards 141.7
Episode 320/2000, average last 10 rewards 144.7
Episode 330/2000, average last 10 rewards 165.7
Episode 340/2000, average last 10 rewards 26.1
Episode 350/2000, average last 10 rewards 9.7
Episode 360/2000, average last 10 rewards 9.6
Episode 370/2000, average last 10 rewards 9.7
Episode 380/2000, average last 10 rewards 9.4
Episode 390/2000, average last 10 rewards 11.3
Episode 400/2000, average last 10 rewards 11.6
Episode 410/2000, average last 10 rewards 165.4
Episode 420/2000, average last 10 rewards 170.5
Episode 430/2000, average last 10 rewards 25.1
Episode 440/2000, average last 10 rewards 74.1
Episode 450/2000, average last 10 rewards 214.7
Episode 460/2000, average last 10 rewards 139.1
Episode 470/2000, average last 10 rewards 265.1
Episode 480/2000, average last 10 rewards 296.7
Episode 490/2000, average last 10 rewards 101.7
Episode 500/2000, average last 10 rewards 146.6
Episode 510/2000, average last 10 rewards 325.6
Episode 520/2000, average last 10 rewards 45.9
Episode 530/2000, average last 10 rewards 263.5
Episode 540/2000, average last 10 rewards 223.3
Episode 550/2000, average last 10 rewards 73.1
Episode 560/2000, average last 10 rewards 115.0
Episode 570/2000, average last 10 rewards 148.3
Episode 580/2000, average last 10 rewards 41.6
Episode 590/2000, average last 10 rewards 266.7
Episode 600/2000, average last 10 rewards 275.2
Episode 610/2000, average last 10 rewards 253.9
Episode 620/2000, average last 10 rewards 282.2
Episode 630/2000, average last 10 rewards 348.3
Episode 640/2000, average last 10 rewards 162.2
Episode 650/2000, average last 10 rewards 276.0
Episode 660/2000, average last 10 rewards 234.6
Episode 670/2000, average last 10 rewards 187.4
Episode 680/2000, average last 10 rewards 285.0
Episode 690/2000, average last 10 rewards 362.8
Episode 700/2000, average last 10 rewards 316.0
Episode 710/2000, average last 10 rewards 436.0
Episode 720/2000, average last 10 rewards 366.1
Episode 730/2000, average last 10 rewards 305.0
Episode 740/2000, average last 10 rewards 273.2
Episode 750/2000, average last 10 rewards 236.8
Episode 760/2000, average last 10 rewards 260.2
Episode 770/2000, average last 10 rewards 443.9
Episode 780/2000, average last 10 rewards 494.2
Episode 790/2000, average last 10 rewards 333.1
Episode 800/2000, average last 10 rewards 367.1
Episode 810/2000, average last 10 rewards 317.8
Episode 820/2000, average last 10 rewards 396.6
Episode 830/2000, average last 10 rewards 494.1
Episode 840/2000, average last 10 rewards 500.0

繪製代理程式的學習歷程記錄

plt.figure(figsize=(10,5))
plt.plot(episode_reward_history)
plt.xlabel('Epsiode')
plt.ylabel('Collected rewards')
plt.show()

png

與上圖類似,您應該會看到,在大約 1000 個劇集後,代理程式的效能接近最佳,即每個劇集 500 個回報。對於 Q 學習代理程式來說,學習時間更長,因為 Q 函數是一個比策略「更豐富」的函數。

4. 練習

現在您已經訓練了兩種不同類型的模型,請嘗試使用不同的環境 (以及不同數量的量子位元和層) 進行實驗。您也可以嘗試將最後兩節的 PQC 模型組合到 演員評論家代理程式 中。