![]() |
![]() |
![]() |
![]() |
歡迎使用 Keras 量化感知訓練綜合指南。
本頁面記錄各種使用情境,並說明如何在各種情境中使用 API。一旦您知道所需的 API,請在 API 文件中尋找參數和低階詳細資料。
涵蓋下列使用情境
- 按照下列步驟部署採用 8 位元量化的模型。
- 定義量化感知模型。
- 僅限 Keras HDF5 模型:使用特殊的檢查點和還原序列化邏輯。訓練方式則與標準訓練相同。
- 從量化感知模型建立量化模型。
- 試驗量化。
- 任何用於實驗的項目皆無支援的部署路徑。
- 自訂 Keras 層屬於實驗性質。
設定
為了尋找您需要的 API 並協助理解,您可以執行但不閱讀本節。
! pip install -q tensorflow
! pip install -q tensorflow-model-optimization
import tensorflow as tf
import numpy as np
import tensorflow_model_optimization as tfmot
import tf_keras as keras
import tempfile
input_shape = [20]
x_train = np.random.randn(1, 20).astype(np.float32)
y_train = keras.utils.to_categorical(np.random.randn(1), num_classes=20)
def setup_model():
model = keras.Sequential([
keras.layers.Dense(20, input_shape=input_shape),
keras.layers.Flatten()
])
return model
def setup_pretrained_weights():
model= setup_model()
model.compile(
loss=keras.losses.categorical_crossentropy,
optimizer='adam',
metrics=['accuracy']
)
model.fit(x_train, y_train)
_, pretrained_weights = tempfile.mkstemp('.tf')
model.save_weights(pretrained_weights)
return pretrained_weights
def setup_pretrained_model():
model = setup_model()
pretrained_weights = setup_pretrained_weights()
model.load_weights(pretrained_weights)
return model
setup_model()
pretrained_weights = setup_pretrained_weights()
2024-03-09 12:29:37.526315: E external/local_xla/xla/stream_executor/cuda/cuda_driver.cc:282] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
定義量化感知模型
透過以下列方式定義模型,即可使用總覽頁面中列出的後端部署路徑。預設使用 8 位元量化。
量化整個模型
您的使用情境
- 不支援子類別模型。
提升模型準確度的秘訣
- 嘗試「量化部分層」,略過會大幅降低準確度的層。
- 一般來說,使用量化感知訓練進行微調,效果會比從頭開始訓練更好。
如要讓整個模型感知量化,請將 tfmot.quantization.keras.quantize_model
套用至模型。
base_model = setup_model()
base_model.load_weights(pretrained_weights) # optional but recommended for model accuracy
quant_aware_model = tfmot.quantization.keras.quantize_model(base_model)
quant_aware_model.summary()
Model: "sequential_2" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= quantize_layer (QuantizeLa (None, 20) 3 yer) quant_dense_2 (QuantizeWra (None, 20) 425 pperV2) quant_flatten_2 (QuantizeW (None, 20) 1 rapperV2) ================================================================= Total params: 429 (1.68 KB) Trainable params: 420 (1.64 KB) Non-trainable params: 9 (36.00 Byte) _________________________________________________________________
量化部分層
量化模型可能會對準確度產生負面影響。您可以選擇性地量化模型的層,以探索準確度、速度和模型大小之間的取捨。
您的使用情境
- 如要部署到僅適用於完全量化模型的後端 (例如 EdgeTPU v1、大多數 DSP),請嘗試「量化整個模型」。
提升模型準確度的秘訣
- 一般來說,使用量化感知訓練進行微調,效果會比從頭開始訓練更好。
- 嘗試量化後面的層,而非前面的層。
- 避免量化關鍵層 (例如注意力機制)。
在以下範例中,僅量化 Dense
層。
# Create a base model
base_model = setup_model()
base_model.load_weights(pretrained_weights) # optional but recommended for model accuracy
# Helper function uses `quantize_annotate_layer` to annotate that only the
# Dense layers should be quantized.
def apply_quantization_to_dense(layer):
if isinstance(layer, keras.layers.Dense):
return tfmot.quantization.keras.quantize_annotate_layer(layer)
return layer
# Use `keras.models.clone_model` to apply `apply_quantization_to_dense`
# to the layers of the model.
annotated_model = keras.models.clone_model(
base_model,
clone_function=apply_quantization_to_dense,
)
# Now that the Dense layers are annotated,
# `quantize_apply` actually makes the model quantization aware.
quant_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model)
quant_aware_model.summary()
WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://tensorflow.dev.org.tw/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://tensorflow.dev.org.tw/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._iterations WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._iterations WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._learning_rate WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._learning_rate WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 Model: "sequential_3" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= quantize_layer_1 (Quantize (None, 20) 3 Layer) quant_dense_3 (QuantizeWra (None, 20) 425 pperV2) flatten_3 (Flatten) (None, 20) 0 ================================================================= Total params: 428 (1.67 KB) Trainable params: 420 (1.64 KB) Non-trainable params: 8 (32.00 Byte) _________________________________________________________________
雖然這個範例使用層的類型來決定要量化哪些層,但量化特定層最簡單的方式是設定其 name
屬性,並在 clone_function
中尋找該名稱。
print(base_model.layers[0].name)
dense_3
更易於閱讀,但模型準確度可能較低
這與使用量化感知訓練進行微調不相容,因此準確度可能會低於上述範例。
函式範例
# Use `quantize_annotate_layer` to annotate that the `Dense` layer
# should be quantized.
i = keras.Input(shape=(20,))
x = tfmot.quantization.keras.quantize_annotate_layer(keras.layers.Dense(10))(i)
o = keras.layers.Flatten()(x)
annotated_model = keras.Model(inputs=i, outputs=o)
# Use `quantize_apply` to actually make the model quantization aware.
quant_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model)
# For deployment purposes, the tool adds `QuantizeLayer` after `InputLayer` so that the
# quantized model can take in float inputs instead of only uint8.
quant_aware_model.summary()
Model: "model" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_1 (InputLayer) [(None, 20)] 0 quantize_layer_2 (Quantize (None, 20) 3 Layer) quant_dense_4 (QuantizeWra (None, 10) 215 pperV2) flatten_4 (Flatten) (None, 10) 0 ================================================================= Total params: 218 (872.00 Byte) Trainable params: 210 (840.00 Byte) Non-trainable params: 8 (32.00 Byte) _________________________________________________________________
序列範例
# Use `quantize_annotate_layer` to annotate that the `Dense` layer
# should be quantized.
annotated_model = keras.Sequential([
tfmot.quantization.keras.quantize_annotate_layer(keras.layers.Dense(20, input_shape=input_shape)),
keras.layers.Flatten()
])
# Use `quantize_apply` to actually make the model quantization aware.
quant_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model)
quant_aware_model.summary()
Model: "sequential_4" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= quantize_layer_3 (Quantize (None, 20) 3 Layer) quant_dense_5 (QuantizeWra (None, 20) 425 pperV2) flatten_5 (Flatten) (None, 20) 0 ================================================================= Total params: 428 (1.67 KB) Trainable params: 420 (1.64 KB) Non-trainable params: 8 (32.00 Byte) _________________________________________________________________
檢查點和還原序列化
您的使用情境:此程式碼僅適用於 HDF5 模型格式 (不適用於 HDF5 權重或其他格式)。
# Define the model.
base_model = setup_model()
base_model.load_weights(pretrained_weights) # optional but recommended for model accuracy
quant_aware_model = tfmot.quantization.keras.quantize_model(base_model)
# Save or checkpoint the model.
_, keras_model_file = tempfile.mkstemp('.h5')
quant_aware_model.save(keras_model_file)
# `quantize_scope` is needed for deserializing HDF5 models.
with tfmot.quantization.keras.quantize_scope():
loaded_model = keras.models.load_model(keras_model_file)
loaded_model.summary()
WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://tensorflow.dev.org.tw/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://tensorflow.dev.org.tw/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._iterations WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._iterations WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._learning_rate WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._learning_rate WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model. /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tf_keras/src/engine/training.py:3098: UserWarning: You are saving your model as an HDF5 file via `model.save()`. This file format is considered legacy. We recommend using instead the native TF-Keras format, e.g. `model.save('my_model.keras')`. saving_api.save_model( WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model. WARNING:tensorflow:No training configuration found in the save file, so the model was *not* compiled. Compile it manually. WARNING:tensorflow:No training configuration found in the save file, so the model was *not* compiled. Compile it manually. Model: "sequential_5" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= quantize_layer_4 (Quantize (None, 20) 3 Layer) quant_dense_6 (QuantizeWra (None, 20) 425 pperV2) quant_flatten_6 (QuantizeW (None, 20) 1 rapperV2) ================================================================= Total params: 429 (1.68 KB) Trainable params: 420 (1.64 KB) Non-trainable params: 9 (36.00 Byte) _________________________________________________________________
建立並部署量化模型
一般來說,請參考您將使用的部署後端的說明文件。
這是 TFLite 後端的範例。
base_model = setup_pretrained_model()
quant_aware_model = tfmot.quantization.keras.quantize_model(base_model)
# Typically you train the model here.
converter = tf.lite.TFLiteConverter.from_keras_model(quant_aware_model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
quantized_tflite_model = converter.convert()
1/1 [==============================] - 1s 684ms/step - loss: 16.1181 - accuracy: 0.0000e+00 WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://tensorflow.dev.org.tw/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://tensorflow.dev.org.tw/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._iterations WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._iterations WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._learning_rate WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._learning_rate WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 INFO:tensorflow:Assets written to: /tmpfs/tmp/tmpyo_u4d_8/assets INFO:tensorflow:Assets written to: /tmpfs/tmp/tmpyo_u4d_8/assets /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/lite/python/convert.py:964: UserWarning: Statistics for quantized inputs were expected, but not specified; continuing anyway. warnings.warn( WARNING: All log messages before absl::InitializeLog() is called are written to STDERR W0000 00:00:1709987395.907073 23976 tf_tfl_flatbuffer_helpers.cc:390] Ignored output_format. W0000 00:00:1709987395.907116 23976 tf_tfl_flatbuffer_helpers.cc:393] Ignored drop_control_dependency.
試驗量化
您的使用情境:使用下列 API 表示沒有支援的部署路徑。例如,TFLite 轉換和核心實作僅支援 8 位元量化。這些功能也屬於實驗性質,不受回溯相容性規範約束。
tfmot.quantization.keras.QuantizeConfig
tfmot.quantization.keras.quantizers.Quantizer
tfmot.quantization.keras.quantizers.LastValueQuantizer
tfmot.quantization.keras.quantizers.MovingAverageQuantizer
設定:DefaultDenseQuantizeConfig
實驗需要使用 tfmot.quantization.keras.QuantizeConfig
,此設定描述如何量化層的權重、啟動和輸出。
以下範例定義了與 API 預設值中 Dense
層相同的 QuantizeConfig
。
在本範例的前向傳播期間,系統會以 layer.kernel
作為輸入,呼叫 get_weights_and_quantizers
中傳回的 LastValueQuantizer
,並產生輸出。透過 set_quantize_weights
中定義的邏輯,輸出會取代 Dense
層原始前向傳播中的 layer.kernel
。相同的概念也適用於啟動和輸出。
LastValueQuantizer = tfmot.quantization.keras.quantizers.LastValueQuantizer
MovingAverageQuantizer = tfmot.quantization.keras.quantizers.MovingAverageQuantizer
class DefaultDenseQuantizeConfig(tfmot.quantization.keras.QuantizeConfig):
# Configure how to quantize weights.
def get_weights_and_quantizers(self, layer):
return [(layer.kernel, LastValueQuantizer(num_bits=8, symmetric=True, narrow_range=False, per_axis=False))]
# Configure how to quantize activations.
def get_activations_and_quantizers(self, layer):
return [(layer.activation, MovingAverageQuantizer(num_bits=8, symmetric=False, narrow_range=False, per_axis=False))]
def set_quantize_weights(self, layer, quantize_weights):
# Add this line for each item returned in `get_weights_and_quantizers`
# , in the same order
layer.kernel = quantize_weights[0]
def set_quantize_activations(self, layer, quantize_activations):
# Add this line for each item returned in `get_activations_and_quantizers`
# , in the same order.
layer.activation = quantize_activations[0]
# Configure how to quantize outputs (may be equivalent to activations).
def get_output_quantizers(self, layer):
return []
def get_config(self):
return {}
量化自訂 Keras 層
本範例使用 DefaultDenseQuantizeConfig
量化 CustomLayer
。
在「試驗量化」使用情境中,套用設定的方式皆相同。
- 將
tfmot.quantization.keras.quantize_annotate_layer
套用至CustomLayer
,並傳入QuantizeConfig
。 - 使用
tfmot.quantization.keras.quantize_annotate_model
繼續使用 API 預設值量化模型的其餘部分。
quantize_annotate_layer = tfmot.quantization.keras.quantize_annotate_layer
quantize_annotate_model = tfmot.quantization.keras.quantize_annotate_model
quantize_scope = tfmot.quantization.keras.quantize_scope
class CustomLayer(keras.layers.Dense):
pass
model = quantize_annotate_model(keras.Sequential([
quantize_annotate_layer(CustomLayer(20, input_shape=(20,)), DefaultDenseQuantizeConfig()),
keras.layers.Flatten()
]))
# `quantize_apply` requires mentioning `DefaultDenseQuantizeConfig` with `quantize_scope`
# as well as the custom Keras layer.
with quantize_scope(
{'DefaultDenseQuantizeConfig': DefaultDenseQuantizeConfig,
'CustomLayer': CustomLayer}):
# Use `quantize_apply` to actually make the model quantization aware.
quant_aware_model = tfmot.quantization.keras.quantize_apply(model)
quant_aware_model.summary()
Model: "sequential_8" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= quantize_layer_6 (Quantize (None, 20) 3 Layer) quant_custom_layer (Quanti (None, 20) 425 zeWrapperV2) quant_flatten_9 (QuantizeW (None, 20) 1 rapperV2) ================================================================= Total params: 429 (1.68 KB) Trainable params: 420 (1.64 KB) Non-trainable params: 9 (36.00 Byte) _________________________________________________________________
修改量化參數
常見錯誤:通常將偏差量化為少於 32 位元,會對模型準確度造成過度損害。
本範例修改 Dense
層,使其權重使用 4 位元而非預設的 8 位元。模型的其餘部分繼續使用 API 預設值。
quantize_annotate_layer = tfmot.quantization.keras.quantize_annotate_layer
quantize_annotate_model = tfmot.quantization.keras.quantize_annotate_model
quantize_scope = tfmot.quantization.keras.quantize_scope
class ModifiedDenseQuantizeConfig(DefaultDenseQuantizeConfig):
# Configure weights to quantize with 4-bit instead of 8-bits.
def get_weights_and_quantizers(self, layer):
return [(layer.kernel, LastValueQuantizer(num_bits=4, symmetric=True, narrow_range=False, per_axis=False))]
在「試驗量化」使用情境中,套用設定的方式皆相同。
- 將
tfmot.quantization.keras.quantize_annotate_layer
套用至Dense
層,並傳入QuantizeConfig
。 - 使用
tfmot.quantization.keras.quantize_annotate_model
繼續使用 API 預設值量化模型的其餘部分。
model = quantize_annotate_model(keras.Sequential([
# Pass in modified `QuantizeConfig` to modify this Dense layer.
quantize_annotate_layer(keras.layers.Dense(20, input_shape=(20,)), ModifiedDenseQuantizeConfig()),
keras.layers.Flatten()
]))
# `quantize_apply` requires mentioning `ModifiedDenseQuantizeConfig` with `quantize_scope`:
with quantize_scope(
{'ModifiedDenseQuantizeConfig': ModifiedDenseQuantizeConfig}):
# Use `quantize_apply` to actually make the model quantization aware.
quant_aware_model = tfmot.quantization.keras.quantize_apply(model)
quant_aware_model.summary()
Model: "sequential_9" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= quantize_layer_7 (Quantize (None, 20) 3 Layer) quant_dense_9 (QuantizeWra (None, 20) 425 pperV2) quant_flatten_10 (Quantize (None, 20) 1 WrapperV2) ================================================================= Total params: 429 (1.68 KB) Trainable params: 420 (1.64 KB) Non-trainable params: 9 (36.00 Byte) _________________________________________________________________
修改要量化的層部分
本範例修改 Dense
層,以略過量化啟動。模型的其餘部分繼續使用 API 預設值。
quantize_annotate_layer = tfmot.quantization.keras.quantize_annotate_layer
quantize_annotate_model = tfmot.quantization.keras.quantize_annotate_model
quantize_scope = tfmot.quantization.keras.quantize_scope
class ModifiedDenseQuantizeConfig(DefaultDenseQuantizeConfig):
def get_activations_and_quantizers(self, layer):
# Skip quantizing activations.
return []
def set_quantize_activations(self, layer, quantize_activations):
# Empty since `get_activaations_and_quantizers` returns
# an empty list.
return
在「試驗量化」使用情境中,套用設定的方式皆相同。
- 將
tfmot.quantization.keras.quantize_annotate_layer
套用至Dense
層,並傳入QuantizeConfig
。 - 使用
tfmot.quantization.keras.quantize_annotate_model
繼續使用 API 預設值量化模型的其餘部分。
model = quantize_annotate_model(keras.Sequential([
# Pass in modified `QuantizeConfig` to modify this Dense layer.
quantize_annotate_layer(keras.layers.Dense(20, input_shape=(20,)), ModifiedDenseQuantizeConfig()),
keras.layers.Flatten()
]))
# `quantize_apply` requires mentioning `ModifiedDenseQuantizeConfig` with `quantize_scope`:
with quantize_scope(
{'ModifiedDenseQuantizeConfig': ModifiedDenseQuantizeConfig}):
# Use `quantize_apply` to actually make the model quantization aware.
quant_aware_model = tfmot.quantization.keras.quantize_apply(model)
quant_aware_model.summary()
Model: "sequential_10" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= quantize_layer_8 (Quantize (None, 20) 3 Layer) quant_dense_10 (QuantizeWr (None, 20) 423 apperV2) quant_flatten_11 (Quantize (None, 20) 1 WrapperV2) ================================================================= Total params: 427 (1.67 KB) Trainable params: 420 (1.64 KB) Non-trainable params: 7 (28.00 Byte) _________________________________________________________________
使用自訂量化演算法
tfmot.quantization.keras.quantizers.Quantizer
類別是可呼叫的物件,可將任何演算法套用至其輸入。
在本範例中,輸入是權重,而我們將 FixedRangeQuantizer
__call__ 函式中的數學運算套用至權重。現在,FixedRangeQuantizer
的輸出會傳遞至原本會使用權重的任何項目,而非原始權重值。
quantize_annotate_layer = tfmot.quantization.keras.quantize_annotate_layer
quantize_annotate_model = tfmot.quantization.keras.quantize_annotate_model
quantize_scope = tfmot.quantization.keras.quantize_scope
class FixedRangeQuantizer(tfmot.quantization.keras.quantizers.Quantizer):
"""Quantizer which forces outputs to be between -1 and 1."""
def build(self, tensor_shape, name, layer):
# Not needed. No new TensorFlow variables needed.
return {}
def __call__(self, inputs, training, weights, **kwargs):
return keras.backend.clip(inputs, -1.0, 1.0)
def get_config(self):
# Not needed. No __init__ parameters to serialize.
return {}
class ModifiedDenseQuantizeConfig(DefaultDenseQuantizeConfig):
# Configure weights to quantize with 4-bit instead of 8-bits.
def get_weights_and_quantizers(self, layer):
# Use custom algorithm defined in `FixedRangeQuantizer` instead of default Quantizer.
return [(layer.kernel, FixedRangeQuantizer())]
在「試驗量化」使用情境中,套用設定的方式皆相同。
- 將
tfmot.quantization.keras.quantize_annotate_layer
套用至Dense
層,並傳入QuantizeConfig
。 - 使用
tfmot.quantization.keras.quantize_annotate_model
繼續使用 API 預設值量化模型的其餘部分。
model = quantize_annotate_model(keras.Sequential([
# Pass in modified `QuantizeConfig` to modify this `Dense` layer.
quantize_annotate_layer(keras.layers.Dense(20, input_shape=(20,)), ModifiedDenseQuantizeConfig()),
keras.layers.Flatten()
]))
# `quantize_apply` requires mentioning `ModifiedDenseQuantizeConfig` with `quantize_scope`:
with quantize_scope(
{'ModifiedDenseQuantizeConfig': ModifiedDenseQuantizeConfig}):
# Use `quantize_apply` to actually make the model quantization aware.
quant_aware_model = tfmot.quantization.keras.quantize_apply(model)
quant_aware_model.summary()
Model: "sequential_11" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= quantize_layer_9 (Quantize (None, 20) 3 Layer) quant_dense_11 (QuantizeWr (None, 20) 423 apperV2) quant_flatten_12 (Quantize (None, 20) 1 WrapperV2) ================================================================= Total params: 427 (1.67 KB) Trainable params: 420 (1.64 KB) Non-trainable params: 7 (28.00 Byte) _________________________________________________________________