![]() |
![]() |
![]() |
![]() |
總覽
本教學課程說明如何使用 BigQuery TensorFlow 讀取器,以使用 Keras sequential API 訓練神經網路。
資料集
本教學課程使用 美國人口普查收入資料集,該資料集由 UC Irvine 機器學習儲存庫提供。此資料集包含來自 1994 年人口普查資料庫的人員資訊,包括年齡、教育程度、婚姻狀況、職業以及年收入是否超過 $50,000 美元。
設定
設定您的 GCP 專案
無論您的筆記本環境為何,都需要執行以下步驟。
- 選取或建立 GCP 專案。
- 確認您的專案已啟用計費功能。
- 啟用 BigQuery Storage API
- 在以下儲存格中輸入您的專案 ID。然後執行儲存格,以確保 Cloud SDK 為此筆記本中的所有指令使用正確的專案。
安裝必要套件,並重新啟動執行階段
try:
# Use the Colab's preinstalled TensorFlow 2.x
%tensorflow_version 2.x
except:
pass
pip install fastavro
pip install tensorflow-io==0.9.0
pip install google-cloud-bigquery-storage
驗證
from google.colab import auth
auth.authenticate_user()
print('Authenticated')
設定您的專案 ID
PROJECT_ID = "<YOUR PROJECT>"
! gcloud config set project $PROJECT_ID
%env GCLOUD_PROJECT=$PROJECT_ID
匯入 Python 程式庫,定義常數
from __future__ import absolute_import, division, print_function, unicode_literals
import os
from six.moves import urllib
import tempfile
import numpy as np
import pandas as pd
import tensorflow as tf
from google.cloud import bigquery
from google.api_core.exceptions import GoogleAPIError
LOCATION = 'us'
# Storage directory
DATA_DIR = os.path.join(tempfile.gettempdir(), 'census_data')
# Download options.
DATA_URL = 'https://storage.googleapis.com/cloud-samples-data/ml-engine/census/data'
TRAINING_FILE = 'adult.data.csv'
EVAL_FILE = 'adult.test.csv'
TRAINING_URL = '%s/%s' % (DATA_URL, TRAINING_FILE)
EVAL_URL = '%s/%s' % (DATA_URL, EVAL_FILE)
DATASET_ID = 'census_dataset'
TRAINING_TABLE_ID = 'census_training_table'
EVAL_TABLE_ID = 'census_eval_table'
CSV_SCHEMA = [
bigquery.SchemaField("age", "FLOAT64"),
bigquery.SchemaField("workclass", "STRING"),
bigquery.SchemaField("fnlwgt", "FLOAT64"),
bigquery.SchemaField("education", "STRING"),
bigquery.SchemaField("education_num", "FLOAT64"),
bigquery.SchemaField("marital_status", "STRING"),
bigquery.SchemaField("occupation", "STRING"),
bigquery.SchemaField("relationship", "STRING"),
bigquery.SchemaField("race", "STRING"),
bigquery.SchemaField("gender", "STRING"),
bigquery.SchemaField("capital_gain", "FLOAT64"),
bigquery.SchemaField("capital_loss", "FLOAT64"),
bigquery.SchemaField("hours_per_week", "FLOAT64"),
bigquery.SchemaField("native_country", "STRING"),
bigquery.SchemaField("income_bracket", "STRING"),
]
UNUSED_COLUMNS = ["fnlwgt", "education_num"]
將人口普查資料匯入 BigQuery
定義協助程式方法,以將資料載入 BigQuery
def create_bigquery_dataset_if_necessary(dataset_id):
# Construct a full Dataset object to send to the API.
client = bigquery.Client(project=PROJECT_ID)
dataset = bigquery.Dataset(bigquery.dataset.DatasetReference(PROJECT_ID, dataset_id))
dataset.location = LOCATION
try:
dataset = client.create_dataset(dataset) # API request
return True
except GoogleAPIError as err:
if err.code != 409: # http_client.CONFLICT
raise
return False
def load_data_into_bigquery(url, table_id):
create_bigquery_dataset_if_necessary(DATASET_ID)
client = bigquery.Client(project=PROJECT_ID)
dataset_ref = client.dataset(DATASET_ID)
table_ref = dataset_ref.table(table_id)
job_config = bigquery.LoadJobConfig()
job_config.write_disposition = bigquery.WriteDisposition.WRITE_TRUNCATE
job_config.source_format = bigquery.SourceFormat.CSV
job_config.schema = CSV_SCHEMA
load_job = client.load_table_from_uri(
url, table_ref, job_config=job_config
)
print("Starting job {}".format(load_job.job_id))
load_job.result() # Waits for table load to complete.
print("Job finished.")
destination_table = client.get_table(table_ref)
print("Loaded {} rows.".format(destination_table.num_rows))
在 BigQuery 中載入人口普查資料。
load_data_into_bigquery(TRAINING_URL, TRAINING_TABLE_ID)
load_data_into_bigquery(EVAL_URL, EVAL_TABLE_ID)
Starting job 2ceffef8-e6e4-44bb-9e86-3d97b0501187 Job finished. Loaded 32561 rows. Starting job bf66f1b3-2506-408b-9009-c19f4ae9f58a Job finished. Loaded 16278 rows.
確認資料已匯入
待辦事項:將 <YOUR PROJECT> 替換為您的 PROJECT_ID
%%bigquery --use_bqstorage_api
SELECT * FROM `<YOUR PROJECT>.census_dataset.census_training_table` LIMIT 5
使用 BigQuery 讀取器在 TensorFlow DataSet 中載入人口普查資料
從 BigQuery 讀取並轉換人口普查資料到 TensorFlow DataSet 中
from tensorflow.python.framework import ops
from tensorflow.python.framework import dtypes
from tensorflow_io.bigquery import BigQueryClient
from tensorflow_io.bigquery import BigQueryReadSession
def transform_row(row_dict):
# Trim all string tensors
trimmed_dict = { column:
(tf.strings.strip(tensor) if tensor.dtype == 'string' else tensor)
for (column,tensor) in row_dict.items()
}
# Extract feature column
income_bracket = trimmed_dict.pop('income_bracket')
# Convert feature column to 0.0/1.0
income_bracket_float = tf.cond(tf.equal(tf.strings.strip(income_bracket), '>50K'),
lambda: tf.constant(1.0),
lambda: tf.constant(0.0))
return (trimmed_dict, income_bracket_float)
def read_bigquery(table_name):
tensorflow_io_bigquery_client = BigQueryClient()
read_session = tensorflow_io_bigquery_client.read_session(
"projects/" + PROJECT_ID,
PROJECT_ID, table_name, DATASET_ID,
list(field.name for field in CSV_SCHEMA
if not field.name in UNUSED_COLUMNS),
list(dtypes.double if field.field_type == 'FLOAT64'
else dtypes.string for field in CSV_SCHEMA
if not field.name in UNUSED_COLUMNS),
requested_streams=2)
dataset = read_session.parallel_read_rows()
transformed_ds = dataset.map(transform_row)
return transformed_ds
BATCH_SIZE = 32
training_ds = read_bigquery(TRAINING_TABLE_ID).shuffle(10000).batch(BATCH_SIZE)
eval_ds = read_bigquery(EVAL_TABLE_ID).batch(BATCH_SIZE)
定義特徵欄
def get_categorical_feature_values(column):
query = 'SELECT DISTINCT TRIM({}) FROM `{}`.{}.{}'.format(column, PROJECT_ID, DATASET_ID, TRAINING_TABLE_ID)
client = bigquery.Client(project=PROJECT_ID)
dataset_ref = client.dataset(DATASET_ID)
job_config = bigquery.QueryJobConfig()
query_job = client.query(query, job_config=job_config)
result = query_job.to_dataframe()
return result.values[:,0]
from tensorflow import feature_column
feature_columns = []
# numeric cols
for header in ['capital_gain', 'capital_loss', 'hours_per_week']:
feature_columns.append(feature_column.numeric_column(header))
# categorical cols
for header in ['workclass', 'marital_status', 'occupation', 'relationship',
'race', 'native_country', 'education']:
categorical_feature = feature_column.categorical_column_with_vocabulary_list(
header, get_categorical_feature_values(header))
categorical_feature_one_hot = feature_column.indicator_column(categorical_feature)
feature_columns.append(categorical_feature_one_hot)
# bucketized cols
age = feature_column.numeric_column('age')
age_buckets = feature_column.bucketized_column(age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65])
feature_columns.append(age_buckets)
feature_layer = tf.keras.layers.DenseFeatures(feature_columns)
建構和訓練模型
建構模型
Dense = tf.keras.layers.Dense
model = tf.keras.Sequential(
[
feature_layer,
Dense(100, activation=tf.nn.relu, kernel_initializer='uniform'),
Dense(75, activation=tf.nn.relu),
Dense(50, activation=tf.nn.relu),
Dense(25, activation=tf.nn.relu),
Dense(1, activation=tf.nn.sigmoid)
])
# Compile Keras model
model.compile(
loss='binary_crossentropy',
metrics=['accuracy'])
訓練模型
model.fit(training_ds, epochs=5)
WARNING:tensorflow:Layer sequential is casting an input tensor from dtype float64 to the layer's dtype of float32, which is new behavior in TensorFlow 2. The layer has dtype float32 because it's dtype defaults to floatx. If you intended to run this layer in float32, you can safely ignore this warning. If in doubt, this warning is likely only an issue if you are porting a TensorFlow 1.X model to TensorFlow 2. To change all layers to have dtype float64 by default, call `tf.keras.backend.set_floatx('float64')`. To change just this layer, pass dtype='float64' to the layer constructor. If you are the author of this layer, you can disable autocasting by passing autocast=False to the base Layer constructor. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/feature_column/feature_column_v2.py:4276: IndicatorColumn._variable_shape (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/feature_column/feature_column_v2.py:4331: VocabularyListCategoricalColumn._num_buckets (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. Epoch 1/5 1018/1018 [==============================] - 17s 17ms/step - loss: 0.5985 - accuracy: 0.8105 Epoch 2/5 1018/1018 [==============================] - 10s 10ms/step - loss: 0.3670 - accuracy: 0.8324 Epoch 3/5 1018/1018 [==============================] - 11s 10ms/step - loss: 0.3487 - accuracy: 0.8393 Epoch 4/5 1018/1018 [==============================] - 11s 10ms/step - loss: 0.3398 - accuracy: 0.8435 Epoch 5/5 1018/1018 [==============================] - 11s 11ms/step - loss: 0.3377 - accuracy: 0.8455 <tensorflow.python.keras.callbacks.History at 0x7f978f5b91d0>
評估模型
評估模型
loss, accuracy = model.evaluate(eval_ds)
print("Accuracy", accuracy)
509/509 [==============================] - 8s 15ms/step - loss: 0.3338 - accuracy: 0.8398 Accuracy 0.8398452
評估幾個隨機樣本
sample_x = {
'age' : np.array([56, 36]),
'workclass': np.array(['Local-gov', 'Private']),
'education': np.array(['Bachelors', 'Bachelors']),
'marital_status': np.array(['Married-civ-spouse', 'Married-civ-spouse']),
'occupation': np.array(['Tech-support', 'Other-service']),
'relationship': np.array(['Husband', 'Husband']),
'race': np.array(['White', 'Black']),
'gender': np.array(['Male', 'Male']),
'capital_gain': np.array([0, 7298]),
'capital_loss': np.array([0, 0]),
'hours_per_week': np.array([40, 36]),
'native_country': np.array(['United-States', 'United-States'])
}
model.predict(sample_x)
array([[0.5541261], [0.6209938]], dtype=float32)