tfds.decode
API 可讓您覆寫預設的功能解碼。主要用途是略過圖片解碼,以提升效能。
用法範例
略過圖片解碼
為了完整掌控解碼管線,或是在圖片解碼前套用篩選器 (以提升效能),您可以完全略過圖片解碼。tfds.features.Image
和 tfds.features.Video
皆適用。
ds = tfds.load('imagenet2012', split='train', decoders={
'image': tfds.decode.SkipDecoding(),
})
for example in ds.take(1):
assert example['image'].dtype == tf.string # Images are not decoded
在圖片解碼前篩選/隨機排序資料集
與先前的範例類似,您可以使用 tfds.decode.SkipDecoding()
在解碼圖片前插入額外的 tf.data
管線自訂設定。如此一來,已篩選的圖片就不會經過解碼,而您可以使用更大的隨機排序緩衝區。
# Load the base dataset without decoding
ds, ds_info = tfds.load(
'imagenet2012',
split='train',
decoders={
'image': tfds.decode.SkipDecoding(), # Image won't be decoded here
},
as_supervised=True,
with_info=True,
)
# Apply filter and shuffle
ds = ds.filter(lambda image, label: label != 10)
ds = ds.shuffle(10000)
# Then decode with ds_info.features['image']
ds = ds.map(
lambda image, label: ds_info.features['image'].decode_example(image), label)
同時裁剪和解碼
若要覆寫預設的 tf.io.decode_image
作業,您可以使用 tfds.decode.make_decoder()
裝飾器建立新的 tfds.decode.Decoder
物件。
@tfds.decode.make_decoder()
def decode_example(serialized_image, feature):
crop_y, crop_x, crop_height, crop_width = 10, 10, 64, 64
return tf.image.decode_and_crop_jpeg(
serialized_image,
[crop_y, crop_x, crop_height, crop_width],
channels=feature.feature.shape[-1],
)
ds = tfds.load('imagenet2012', split='train', decoders={
# With video, decoders are applied to individual frames
'image': decode_example(),
})
這相當於
def decode_example(serialized_image, feature):
crop_y, crop_x, crop_height, crop_width = 10, 10, 64, 64
return tf.image.decode_and_crop_jpeg(
serialized_image,
[crop_y, crop_x, crop_height, crop_width],
channels=feature.shape[-1],
)
ds, ds_info = tfds.load(
'imagenet2012',
split='train',
with_info=True,
decoders={
'image': tfds.decode.SkipDecoding(), # Skip frame decoding
},
)
ds = ds.map(functools.partial(decode_example, feature=ds_info.features['image']))
自訂影片解碼
影片是 Sequence(Image())
。套用自訂解碼器時,這些解碼器會套用至個別影格。這表示圖片的解碼器會自動與影片相容。
@tfds.decode.make_decoder()
def decode_example(serialized_image, feature):
crop_y, crop_x, crop_height, crop_width = 10, 10, 64, 64
return tf.image.decode_and_crop_jpeg(
serialized_image,
[crop_y, crop_x, crop_height, crop_width],
channels=feature.feature.shape[-1],
)
ds = tfds.load('ucf101', split='train', decoders={
# With video, decoders are applied to individual frames
'video': decode_example(),
})
這相當於
def decode_frame(serialized_image):
"""Decodes a single frame."""
crop_y, crop_x, crop_height, crop_width = 10, 10, 64, 64
return tf.image.decode_and_crop_jpeg(
serialized_image,
[crop_y, crop_x, crop_height, crop_width],
channels=ds_info.features['video'].shape[-1],
)
def decode_video(example):
"""Decodes all individual frames of the video."""
video = example['video']
video = tf.map_fn(
decode_frame,
video,
dtype=ds_info.features['video'].dtype,
parallel_iterations=10,
)
example['video'] = video
return example
ds, ds_info = tfds.load('ucf101', split='train', with_info=True, decoders={
'video': tfds.decode.SkipDecoding(), # Skip frame decoding
})
ds = ds.map(decode_video) # Decode the video
僅解碼部分功能子集。
也可以僅指定您需要的功能,完全略過某些功能。所有其他功能都會遭到忽略/略過。
builder = tfds.builder('my_dataset')
builder.as_dataset(split='train', decoders=tfds.decode.PartialDecoding({
'image': True,
'metadata': {'num_objects', 'scene_name'},
'objects': {'label'},
})
TFDS 會選取符合指定 tfds.decode.PartialDecoding
結構的 builder.info.features
子集。
在上述程式碼中,功能會隱含擷取以符合 builder.info.features
。也可以明確定義功能。上述程式碼相當於
builder = tfds.builder('my_dataset')
builder.as_dataset(split='train', decoders=tfds.decode.PartialDecoding({
'image': tfds.features.Image(),
'metadata': {
'num_objects': tf.int64,
'scene_name': tfds.features.Text(),
},
'objects': tfds.features.Sequence({
'label': tfds.features.ClassLabel(names=[]),
}),
})
原始中繼資料 (標籤名稱、圖片形狀等等) 會自動重複使用,因此不需要提供。
tfds.decode.SkipDecoding
可以透過 PartialDecoding(..., decoders={})
kwargs 傳遞至 tfds.decode.PartialDecoding
。